Mechanisms for Differential Protein Production in Toxin–Antitoxin Systems
نویسندگان
چکیده
Toxin-antitoxin (TA) systems are key regulators of bacterial persistence, a multidrug-tolerant state found in bacterial species that is a major contributing factor to the growing human health crisis of antibiotic resistance. Type II TA systems consist of two proteins, a toxin and an antitoxin; the toxin is neutralized when they form a complex. The ratio of antitoxin to toxin is significantly greater than 1.0 in the susceptible population (non-persister state), but this ratio is expected to become smaller during persistence. Analysis of multiple datasets (RNA-seq, ribosome profiling) and results from translation initiation rate calculators reveal multiple mechanisms that ensure a high antitoxin-to-toxin ratio in the non-persister state. The regulation mechanisms include both translational and transcriptional regulation. We classified E. coli type II TA systems into four distinct classes based on the mechanism of differential protein production between toxin and antitoxin. We find that the most common regulation mechanism is translational regulation. This classification scheme further refines our understanding of one of the fundamental mechanisms underlying bacterial persistence, especially regarding maintenance of the antitoxin-to-toxin ratio.
منابع مشابه
Persister cells formation and expression of type II Toxin-Antitoxin system genes in Brucella melitensis (16M) and Brucella abortus (B19)
Background & Objective: Persister cells are defined as a subpopulation of bacteria that are capable of reducing their metabolism and switching to dormancy in stress conditions. Persister cells formation has been attributed to numerous mechanisms, including stringent response and Toxin-Antitoxin (TA) systems. This study aimed to investigate the hypothetical role of TA systems in...
متن کاملMolecular Detection of Type II Toxin-Antitoxin Systems and their Association with Antibiotic Resistance and Biofilm Formation in Clinical Acinetobacter baumannii Isolates of Burn Patients
Background and purpose: Burn wounds are a good host for infections. Acinetobacter baumannii is an opportunistic bacterium in patients with burn infections. Toxin-antitoxin systems (TAS) are genetic elements that are essential for antibiotic resistance and biofilm formation in bacteria, including higBA and relBE TA systems. The present study aimed to investigate the frequency of higBA and relBE...
متن کاملEvaluation of Toxin and Antitoxin System in Acinetobacter Multidrug Resistance Bacteria Isolated From Clinical Specimens
Introduction: Acinetobacter baumannii is one of the most important nosocomial and community-acquired pathogens that is resistant to many antibiotics. Toxin-antitoxin systems are regulatory systems that maintain bacteria and serve as new targets for Antimicrobial therapies are considered. The prevalence and transcription of these systems in clinical isolates is still unknown. The aim of this stu...
متن کاملsRNAs in bacterial type I and type III toxin-antitoxin systems.
Toxin-antitoxin (TA) loci consist of two genes: a stable toxin whose overexpression kills the cell or causes growth stasis and an unstable antitoxin that neutralizes the toxin action. Currently, five TA systems are known. Here, we review type I and type III systems in which the antitoxins are regulatory RNAs. Type I antitoxins act by a base-pairing mechanism on toxin mRNAs. By contrast, type II...
متن کاملType II toxin/antitoxin MqsR/MqsA controls type V toxin/antitoxin GhoT/GhoS.
Toxin endoribonucleases of toxin/antitoxin (TA) systems regulate protein production by selectively degrading mRNAs but have never been shown to control other TA systems. Here we demonstrate that toxin MqsR of the MqsR/MqsA system enriches toxin ghoT mRNA in vivo and in vitro, since this transcript lacks the primary MqsR cleavage site 5'-GCU. GhoT is a membrane toxin that causes the ghost cell p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2017